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ABSTRACT 
 
We focus on the automatic 3D terrain segmentation problem 
using hyperspectral shortwave IR (HS-SWIR) imagery and 
3D Digital Elevation Models (DEM). The datasets were 
independently collected, and metadata for the HS-SWIR 
dataset are unavailable. We explore an overall slope of the 
SWIR spectrum that correlates with the presence of moisture 
in soil to propose a band ratio test to be used as a proxy for 
soil moisture content to distinguish two broad classes of 
objects: live vegetation from impermeable manmade surface. 
We show that image based localization techniques combined 
with the Optimal Randomized RANdom Sample Consensus 
(RANSAC) algorithm achieve precise spatial matches 
between HS-SWIR data of a portion of downtown Los 
Angeles (LA (USA)) and the Visible image of a geo-
registered 3D DEM, covering a wider-area of LA. Our 
spectral-elevation rule based approach yields an overall 
accuracy of 97.7%, segmenting the object classes into 
buildings, houses, trees, grass, and roads/parking lots.      
 

Index Terms—3D terrain segmentation, hyperspectral, 
Lidar, shortwave infrared, digital elevation model, fusion 
 

1. INTRODUCTION 
 

There are many challenges associated with the fusion of 
different sensing modalities, to include the uncertainty of 
feature correspondence among the modalities due to 
differences in measured phenomena, spatial resolutions, and 
viewing perspectives [1]-[2]. We focus on the problem of 
enabling a machine to automatically segment a digitized 
terrain by first fusing aerial Shortwave infrared (SWIR: 1.0-
2.5 µm) hyperspectral data with 3D Lidar-derived Digital 
Elevation Models (DEMs) that overlap the target scene, then 
employing a spectral-elevation rule based approach to 
segment the digitized terrain into finer material classes (e.g., 
high buildings, houses, tree clusters, grassy areas, 
roads/parking lots). Reliable performance of such automatic 
tasks through software is considered useful for various types 
of commercial and military applications, to include mission 
planning for rescue operations [3]. We further constrain the 
problem in twofold: (i) by using unregistered datasets from 
independent data acquisitions and (ii) by not relying on the 
geo-registration of data from one of the sensing modalities. 
The problem addressed in this paper departs from prior 

works on 3D terrain segmentation, which exclusively use 
hyperspectral data in the visible spectrum (Vis: 0.4-0.7 µm) 
that are already spatially registered to 3D DEMs (see past 
IGARSS challenges [4]), where variations to the state of the 
art machine learning methods are applied to segment the 
digitized scene via object classification. This paper also 
explores an overall slope observed in SWIR spectra that 
correlates with the presence of moisture in soil to propose a 
band ratio test to be used as a proxy for soil moisture content 
that can distinguish two broad classes of material types: live 
healthy vegetation from impermeable manmade surface.  

 

2. SWIR SPECTRAL ANALYSIS FOR             
MATERIAL SEGMENTATION  

 

The products derived from both spectral and spatial 
analyses that are helpful to mission planning consist of three 
procedures: Determination of soil moisture content; 
segmentation of the image into vegetation, soil, and water; 
and derivation of lines of communication (roads, rivers). 
The amount of moisture in soil can impact a number of 
phenomena important for mission planning, including the 
amount of dust in the air and the firmness of the ground. It is 
intuitive that should the soil exceed a certain level of 
moisture content, ground mobility of tracked and wheeled 
vehicles will be adversely affected. Remotely sensed 
spectral imagery can be used to determine the relative 
amounts of moisture in surface soils by examining the 
reflectance in the SWIR region of the spectrum. The 
atmosphere is opaque to SWIR radiation near 1.4 µm and 
1.9 µm due to the presence of gaseous water and carbon 
dioxide. As a result, surface properties at these wavelengths 
are not accessible from remotely sensed images. However, 
immediately adjacent to these regions, the spectrum is 
influenced by the presence of absorbed water (see Fig 1). 
This is true for an absorption feature near 2.2 µm as well. As 
a result of the analysis of laboratory spectra of three types of 
soil—characterized as loam, clay, and sand—it was 
observed that the overall slope of the spectrum in the SWIR 
also correlates with the presence of moisture in the soil. 
Specifically, in terms of the hyperspectral SWIR bands used 
in for this paper, dry soils exhibited an increase in 
reflectance in bands between 2.09 µm and 2.15 µm over 
bands between 1.55 µm and 1.75 µm, see Fig. 1. Wet soils 
were either flat or decreased in reflectance over that span. 



This suggests that a band sub-range ratio test can be used 
as a proxy for soil moisture content in the HS SWIR image 
used in our work. We explore this phenomenon by 
proposing the following wetness index in order to 
distinguish two broad classes of objects in a given terrain 
(live healthy vegetation from impermeable manmade 
surface): 
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where jd  is the radiance or reflectance value at band j. 

Notice from Fig. 1 that the inverse of (1), i.e., 1/Ratio, is 
expected to yield real values between 0 and unity ([0,1]) for 
wet materials. The behavior of such a random variable may 
be modeled by a flexible distribution defined on the interval 
[0,1], such as the beta distribution function, see Fig. 2.   
  

 
Fig. 2.  Beta probability density function. 

The beta distribution is a family of continuous 
probability distributions defined on the interval [0, 1] 
parametrized by two positive shape parameters, denoted by 
α and β, that appear as exponents of the random variable and 
control the shape of the distribution. Modeling (1) as a 
random variable and restricting its behavior by the beta 
distribution family to determine the material wetness 
concentration would allow a likelihood ratio test to be 
formulated. It is beyond the scope of this paper to formulate 
this hypothesis test, although we do have interest in pursuing 
this approach in the future. In the meantime, we anticipate 
that exploring the wetness index in (1) with an adaptively 
estimated threshold can broadly segment the image between 
live vegetation and manmade structures in imagery, as it will 
be shown later. Object class finer distinction (e.g., between 
trees and grass) can further be segmented by aligning 
elevation data to the segmented map pixels. Results using 
(1) and elevation measurements are also discussed later.  

 

3. DATASETS 
We used a dataset collected by Headwall Photonics over 

a multi-block urban area of downtown Los Angeles (LA), 
California, USA, using Headwall’s Hyperspec® SWIR 
hyperspectral imaging sensor [5] onboard a small manned 
airplane. Key sensor specifications: 384 spatial bands, 260 
spectral bands, wavelength range 0.9-2.5 µm, maximum 
frame rate 450 Hz, Stirling-cooled MCT detectors. The 
manned airplane flew the pushbroom hyperspectral imaging 
system over the target area in Los Angeles, collecting 829 
samples by 260 SWIR bands (defined in this case as a 
frame) and using the airplane’s movement to obtain 1,163 
lines. A representation of the datacube consisting of 1,163 
lines by 829 samples by 260 bands of the target area in Los 
Angeles is shown as the band average (less than 1 m pixel 
resolution) in Fig. 3. The area represented in Fig. 3 includes 

  

 
Fig. 3.  SWIR hyperspectral band average of a multi-block urban 
region of Los Angeles, California, USA. 
live vegetation (trees, grass) and manmade structures (high 
buildings, houses, roads, and parking lots, and other 
unknown manmade objects). Notice in Fig. 3 that the data 
acquisition occurred closer to sunset; explaining the 
prolonged shadows observed near the high buildings. We 
conjecture that scale invariant features of terrain landmarks 
between SWIR images and spatially corresponding Vis 
images will be highly correlated; thus, we decided to 

 
 

Fig. 1.  Laboratory reflectance spectra for three types of soils—
loam (green), sand (red), and clay (blue)—under two moisture 
conditions. Areas most sensitive to the presence of liquid water are 
highlighted by light blue and light yellow vertical bands. Note the 
contrast between dry and wet samples. Material spectra courtesy of 
Spectral Information Technology Application Center Library. 
  



explicitly explore this intuition as part of our image 
registration approach. For elevation measurements (Fig. 4), 
we used a 3D DEM representing a significantly wider area 
of Southern California, containing a large portion of LA 
County, to include mountains and the entire downtown LA. 

 

 
Fig. 4. 3D DEM (1 m pixel resolution) of a portion of Los Angeles 
County, California, USA, which includes in relative scale the 
multi-block downtown portion of Los Angeles where the SWIR 
hyperspectral data were collected. 
 

The DEM is geo-registered for Latitude and Longitude 
world coordinates per pixel of equal size (1 m spatial 
resolution), and includes both elevation measurements from 
a Lidar system and a corresponding geo-registered 
orthophoto (nadir Vis image) to put scene context in the 
DEM. Fig. 4 depicts the DEM and shows in relative scale 
the spatial area where within the DEM spatial area the SWIR 
data acquisition occurred; but of course this spatial location 
was unknown prior to the execution of our image 
registration method using these two independent regions of 
the electromagnetic spectrum: SWIR and Vis. The provided 
orthophoto with the DEM also covers an area that is many 
orders of magnitude larger than the area covered by the 
SWIR datacube. In the scope of this paper, successful 
registration by a machine using these datasets constitutes a 
successful automatic association of elevation data with 
spectra, given that for each aligned pixel between these two 
images there is a corresponding spectrum available in the 
hyperspectral datacube. Our image registration approach is 
discussed next. 

 
4. SWIR-VISIBLE SPATIAL MATCHING 

 

Inspired by image-based localization approaches similar 
to the one introduced by Sattler et al. in [6], and the Optimal 
Randomized RANSAC algorithm [7], we succeeded in 
registering the 2D spatial area of the SWIR hyperspectral 
datacube onto the 3D DEM using a variation of our prior 
work [8], resulting in the association of elevation 
measurements with spectra; as follows. The fusion approach 
starts by representing each 3D point in the DEM by all the 
Scale Invariant Feature Transform (SIFT) descriptors [9] 

contributing to its spatial locations in the Vis image. All the 
descriptors of a single 3D point are assigned to a visual 
word. The K-means clustering algorithm is applied to cluster 
all the 3D point clouds into k clusters. We used 100,000 
clusters in this experiment. To improve computational 
efficiency, we avoid comparing all of the points in the point 
clouds by assigning the centroids obtained from the k-means 
to be the visual words. SIFT is independently computed on 
the SWIR and Vis reference images and results are 
represented as visual words for comparison with visual 
words from the previous step. The visual word comparison 
strategy can then be reduced by finding through a sequential 
search the two nearest visual words to the visual word 
(hyperspectral-based SIFT descriptor). The sequential 
search yields a set of correspondences between each 
hyperspectral-based SIFT descriptor and two 3D model 
visual words. A correspondence is accepted if the two 
nearest neighbors pass the SIFT ratio test using a threshold. 
This is based on the idea that the probability that a match is 
correct can be determined by taking the ratio of distance 
from the closest neighbor to the distance of the second 
closest [9]. The method rejects all matches in which the 
distance ratio is greater than 0.7.  This threshold works 
empirically well for this dataset and many others. If more 
than one 2D feature matches exist in association with the 
same 3D point, the descriptor with smallest Euclidean 
distance is selected. The linear search continues until a user-
specified number of correspondences is satisfied (in this 
experiment this number was set to 100), or the search is 
exhausted from the hyperspectral data perspective. The 
resulting set of correspondences does not necessarily 
guarantee a geometric alignment of the hyperspectral images 
onto the 3D DEM that would match the quality that could 
have been achieved by human intervention.  In order to 
improve  the  alignment  process,  we applied the Optimal 
Randomized RANSAC  algorithm  to  the resulting  set  of  
correspondence vectors obtained up to this stage.  The 
geometric alignment is declared as acceptable using the 
criterion that more than n correspondences (n = 5 works well 
empirically in this dataset) must be inliers to accept a match.  

 
5. RESULTS AND DISCUSSION 

 

The fusion approach described in Section 4 was applied 
to the hyperspectral SWIR dataset and Vis orthophoto of 
corresponding DEM using the following details. We chose 
band 14 (near 1.2 µm) to represent the spatial area of the 
entire SWIR hyperspectral datacube because of the high 
reflectance property of most material types in an urban 
scene, relative to other bands. In order to address more 
efficiently the computational load and associated time, given 
the vast spatial coverage of the DEM relative to the smaller 
hyperspectral SWIR spatial coverage (see Fig. 4), we split in 
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half the spatial area of the SWIR band-14 and allowed each 
half to compute their spatial matches independently of each 
other, such that each half estimated its spatial feature 
matches within a neighborhood centered at a random 
(without replacement) spatial location within the wide-area 
Vis orthophoto, thus eliminating once for all the undesirable 
locations in the wide-area digitized scene and retaining the 
better prospects. This strategy is very effective because it 
allows the computational load, which is in the order of O2 
relative to the spatial area, to be processed in parallel using 
two smaller areas rather than simultaneously using a single 
twice-as-large spatial mosaic, cutting in half the matching-
search computational time. This matching search strategy 
paid off and yielded the result depicted in Fig. 5, where the  

 
Fig. 5.  Material segmented map separating material types in the scene 
featuring large concentration of water (trees, bushes, and grass), they are 
represented by white-yellow pixels in the center image. Red to darker 
colored pixels indicate the presence of impermeable manmade surfaces in 
the scene (buildings, houses, roads, and other unknown manmade objects. 
Top image is a corresponding Google Map RGB image.  
 

segmented (white, yellow, red, dark) map represents the 
SWIR spatial area overlaid onto the larger local 
neighborhood in the Vis orthophoto that produced the best 
matching result. This segmented map was the result from 
applying the wetness spectral ratio test in (1), to be 
discussed shortly. Notice in Fig. 5 (segmented map) that the 
split match is slightly misaligned, since they were performed 
independently from each other. We could rectify this 
misalignment by applying a final matching search as an 
additional last step between the entire SWIR mosaic and the 
neighborhood where this split conversion occurred in the 
Vis orthophoto; this optimization, however, was not done for 
this paper. The real advantage from this spatial match is that 
each voxel in the SWIR datacube not only features 270 
bands but also has a corresponding elevation value from the 
DEM. Using this data association, it will be possible to 

refine the terrain segmented maps based on spectral and 
elevation properties as discussed earlier.  

The top image in Fig. 5 is the corresponding Google 
Map Vis photo of the target LA area, which was taken in 
July 2017—this is about 24 months after the HS SWIR data 
acquisition of the same area occurred, and is being used in 
here for visual reference for the reader to qualitatively check 
the material types present in the scene. Immediately below 
the Google Map Vis photo is the overlaid segmented map, 
indicating the materials in the scene containing large 
concentrations of water, where white and yellow pixels 
depict the wettest materials and red and darker pixels depict 
the driest materials. A visual inspection of Fig. 5 suggests 
that the material types in the scene featuring large 
concentration of water are those materials composed of live 
vegetation (i.e., trees, bushes, and grass), which are 
represented by white-yellow pixels in the segmented map. 
Pixels showing red to darker colors seem to belong to 
manmade surfaces in the scene, i.e., buildings, houses, 
roads, parking lots, etc. Notice also from the Google Map 
Vis photo that the level of wetness observed in the 
segmented map seems agnostic to the actual color of the 
objects consisting of live vegetation in the scene, e.g., both 
brownish grassy regions and green tree clusters observed in 
the Google Map Vis photo are indistinguishable in the 
segmentation map. This result suggests that the wetness 
spectral ratio in (1) is an effective means to separate live 
vegetation from manmade structure in the scene, a crucial 
capability for obtaining mission planning geospatial 
products. Fig. 6 includes results with elevation. 
Fig. 6 depicts the result from our spectral-elevation rule 
based segmentation method, where by merely using the 
spectral property distinction in (1) between live vegetation 
and manmade structure in the scene; and taking into account 
the voxels’ corresponding elevation data, which was 
possible because of the successful registration between the 
HS SWIR datacube and DEM, a visual inspection between 
the segmented map in Fig. 6 and the Google Map color 
image in Fig. 5 suggests that red objects in the segmented 
map represent buildings (yielded low wetness index) greater 
than a typical two floor house (ground level included) in the 
United State of America (USA), white objects represent 
neighborhood houses (also having low wetness index) of 
lower height than three floors, green objects are the grass 
regions and other lower canopy (e.g., bushes), yellow objects 
represent the trees (having both high wetness index and an 
elevation greater than shorter canopy), and finally black 
regions represent the roads (having low wetness index and 
low elevation), parking lots, and other unknown manmade 
objects having a lower elevation than a typical single-floor 
house in the USA (e.g., motor vehicles). It is worth noting 
that the results depicted in Fig. 6 were obtained without the 



shortfalls associated with supervised machine learning, 
where a vastly large database of labeled samples is required 
and often unavailable, and with statistical clustering, where 
prior information about the total number of individual 
clusters are often required. In our approach, the wetness 
index in (1) was computed for the entire digitized scene, a 
wetness threshold was applied (adaptively estimated to be 
halfway between the lowest and highest values from the 
scene), and finally using the corresponding elevation data 
and two elevation thresholds (lower than a single floor house 
and higher than a two-floor house), the resulting terrain 
segmented map is obtained as an useful mission planning 
product.  
 

 
Fig. 6.  Segmented map of key objects in the scene produced by our 
spectral-elevation rule based method, highlighting tall buildings (red), 
houses (white), trees (yellow), and roads/parking lots/other unknown 
manmade objects (black). 
 

To quantify the approach’s performance, we withdrew 
from the SWIR datacube and stored a sample library of key 
material classes (i.e., tree clusters, grassy regions, buildings, 
houses, roads/parking lots), such that each class consisted of 
500 randomly selected spectral samples, without 
replacement, with associated elevation datum per spectral 
sample. We applied the wetness index in (1) and the spectral 
and elevation thresholds used to generate the segmented map 
depicted in Fig. 6 in order to produce the performance 
results shown in Table 1. Table 1 summarizes performance 
in terms of Precision, Recall, and Accuracy, which are 
borrowed from mathematical statistics and have become 
popular in the computer vision, document retrieval, and 
medical test communities [6]. Precision only takes into 
account the information contained within the predicted class 
columns, yielding a normalized correct detection in terms of 
false alarms per predicted class that is not constrained by the 
true sample size per true class. Recall takes only into 
account the information contained within the true class row, 
also yielding a normalized correct detection in terms of 
missing the target class; notice that each row sum is 
constrained by the sample size of each true class, in this case  

Table 1. Quantified Performance. 

500 samples per class. Finally, Accuracy does give a truly 
comprehensive performance measure taking into account all 
of the key counts in a confusion matrix (i.e., a measure of 
everything that went right normalized by everything that 
went both right and wrong in the test trial). The spectral-
elevation rule based approach did perform well for this set 
of metrics, and very well for the overall accuracy at 97.7%. 
This overall performance measure was computed by taking 
into account all of true/false positives and true/false 
negatives from all classes. Since elevation data were used to 
distinguish the classes, in addition to the wetness index in 
(1), we would not expect to observe false alarms between 
classes that fall outside expected elevation ranges (e.g., 
Building and Road/Parking Lot), although the Building false 
alarm count of 41 due to House samples (see Table 1) 
suggests that in some of the buildings’ portions in the scene 
fall within the elevation range of the house class. 
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     Precision (%)      88.1             98.0            90.1           97.2            98.8 
     Recall (%)           95.6             98.2            89.2           89.6            99.0 
    Accuracy (%)       96.6             99.2            95.9           97.4            99.6 
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